4 years ago

Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression

Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression
Wei Li, Xiyi Chen, Qixian Chen, Zhen Li, Hui Gao, Yingjie Lei, Xi Yang, De-E Liu, Zhu Jiang
Tetraphenylene (TPE), characterized as a lipophilic and aggregation-induced-emissive fluorophore, was used to incorporate into an electrostatic self-assembled polyethylenimine-poly(ethylene glycol) (PEI–PEG)/plasmid DNA (pDNA) complexed micelle. The hydrophobic character of TPE appeared to drive a higher degree of condensation of the pDNA payload, which consequently resulted in not only strengthened colloidal stability of the constructed polyplex micelle but also improved biocompatibility by virtue of the elevated PEG crowdedness owing to the TPE-induced collapse of pDNA. These beneficial consequences potentially permitted a larger number of polyplex micelles to be internalized into the cells. PEG segments were designed to enable selective detachment from polyplex micelles in acidic milieu, e.g., the tumor microenvironment, and intracellular endosome compartment, based on the strategic arrangement of acid-responsive cleavable linkage between PEG and PEI. Upon PEG detachment, the exposure of cationic PEI/TPE polyplex was allowed to directly interact with the cell membrane, endosome membrane, and charged intracellular species, thus promoting cell internalization, endosome escape, and the release of the pDNA payload. Of note, this association of cationic PEI/TPE polyplex with the endosomal membrane could be further facilitated with the aid of lipophilic TPE, thereby eliciting pronounced destabilization potency to the endosome membrane and exerting an endosomal escape function. Eventually, the proposed system of these facile strategies, including responsive PEG detachment and functional TPE incorporation, was proven to provide efficient gene expression in the targeted tumors with an appreciable safety profile via systemic administration.

Publisher URL: http://dx.doi.org/10.1021/acs.bioconjchem.7b00557

DOI: 10.1021/acs.bioconjchem.7b00557

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.