3 years ago

TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity

TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity
Nour Lydia Mozaffari, Manoël Prouteau, Robbie Loewith, Paul Guichard, Davide Demurtas, Ambroise Desfosses, Suliana Manley, Alok K. Mitra, Clélia Bourgoint, Christian Sieben

The target of rapamycin (TOR) is a eukaryotic serine/threonine protein kinase that functions in two distinct complexes, TORC1 and TORC2, to regulate growth and metabolism1,2. GTPases, responding to signals generated by abiotic stressors, nutrients, and, in metazoans, growth factors, play an important3 but poorly understood role in TORC1 regulation. Here we report that, in budding yeast, glucose withdrawal (which leads to an acute loss of TORC1 kinase activity4) triggers a similarly rapid Rag GTPase-dependent redistribution of TORC1 from being semi-uniform around the vacuolar membrane to a single, vacuole-associated cylindrical structure visible by super-resolution optical microscopy. Three-dimensional reconstructions of cryo-electron micrograph images of these purified cylinders demonstrate that TORC1 oligomerizes into a higher-level hollow helical assembly, which we name a TOROID (TORC1 organized in inhibited domain). Fitting of the recently described mammalian TORC1 structure into our helical map reveals that oligomerization leads to steric occlusion of the active site. Guided by the implications from our reconstruction, we present a TOR1 allele that prevents both TOROID formation and TORC1 inactivation in response to glucose withdrawal, demonstrating that oligomerization is necessary for TORC1 inactivation. Our results reveal a novel mechanism by which Rag GTPases regulate TORC1 activity and suggest that the reversible assembly and/or disassembly of higher-level structures may be an underappreciated mechanism for the regulation of protein kinases.

Publisher URL: http://dx.doi.org/10.1038/nature24021

DOI: 10.1038/nature24021

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.