3 years ago

Charge Transfer Exciton and Spin Flipping at Organic–Transition-Metal Dichalcogenide Interfaces

Charge Transfer Exciton and Spin Flipping at Organic–Transition-Metal Dichalcogenide Interfaces
Bhupal Kattel, Tika R. Kafle, Hui Zhao, Wai-Lun Chan, Samuel D. Lane, Ti Wang
Two-dimensional transition-metal dichalcogenides (TMD) can be combined with other materials such as organic small molecules to form hybrid van der Waals heterostructures. Because of different properties possessed by these two materials, the hybrid interface can exhibit properties that cannot be found in either of the materials. In this work, the zinc phthalocyanine (ZnPc)–molybdenum disulfide (MoS2) interface is used as a model system to study the charge transfer at these interfaces. It is found that the optically excited singlet exciton in ZnPc transfers its electron to MoS2 in 80 fs after photoexcitation to form a charge transfer exciton. However, back electron transfer occurs on the time scale of ∼1–100 ps, which results in the formation of a triplet exciton in the ZnPc layer. This relatively fast singlet–triplet transition is feasible because of the large singlet–triplet splitting in organic materials and the strong spin–orbit coupling in TMD crystals. The back electron transfer would reduce the yield of free carrier generation at the heterojunction if it is not avoided. On the other hand, the spin-selective back electron transfer could be used to manipulate electron spin in hybrid electronic devices.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04751

DOI: 10.1021/acsnano.7b04751

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.