3 years ago

Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes

Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes
Melanie S. Sanford, Allan J. Canty, Nicole M. Camasso, Alireza Ariafard
This article describes a detailed comparison of the organometallic chemistry of high-valent nickel and palladium model complexes supported by tris(pyrazolyl)borate and cycloneophyl ligands. The accessibility of the MIII and MIV oxidation states with each metal is investigated through electrochemical and chemical oxidation of the MII precursors. These studies show that the NiII precursor readily undergoes both one- and two-electron oxidations to generate stable NiIII and NiIV products. In contrast, under the conditions examined, the PdII analogue undergoes exclusively two-electron-oxidation reactions to form PdIV. Reactivity studies of isolated NiIV and PdIV complexes show that both participate in C(sp3)–heteroatom coupling reactions and that the reactions at NiIV are approximately 2 orders of magnitude faster than those at PdIV. Experimental and computational mechanistic studies implicate outer-sphere SN2-type pathways for these processes. With most nucleophiles (e.g., phenoxide, acetate, thiophenoxide), the C(sp3)–heteroatom coupling reaction yields a TpMII(σ-aryl) product. However, with azide as the nucleophile, the NiII product of initial C(sp3)–N3 coupling undergoes a subsequent C(sp2)–N insertion reaction. Computations implicate an anionic NiIII–nitrene intermediate in this process and show that the Pd analogue of this species is a much higher energy species. Overall, the combined experimental and computational studies demonstrate remarkable similarities in the chemistry of NiIV and PdIV but an enhanced role for NiIII in enabling reactivity which is distinct from that of palladium.

Publisher URL: http://dx.doi.org/10.1021/acs.organomet.7b00613

DOI: 10.1021/acs.organomet.7b00613

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.