4 years ago

Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting

Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting
Lionel Vayssieres, Yankuan Wei, Jinzhan Su
With the past decade of worldwide sustained efforts on artificial photosynthesis for photocatalytic solar water splitting and clean hydrogen generation by dedicated researchers and engineers from different disciplines, substantial progress has been achieved in raising its overall efficiency along with finding new photocatalysts. Various materials, systems, devices, and better fundamental understandings of the interplay between interfacial chemistry, electronic structure, and photogenerated charge dynamics involved have been developed. Nevertheless, the overall photocatalytic performance is yet to achieve its maximum theoretical limit. Moreover, the stability of well-known semiconductors (as well as novel ones) remains the biggest challenge that scientists are facing to develop durable industrial-scale devices for large-scale water oxidation and overall solar water splitting. In this Perspective, we summarize the major achievements and the different approaches carried out to improve the stability and performance of photoelectrodes based on sulfide, nitride, and phosphide semiconductors.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b00772

DOI: 10.1021/acs.jpclett.7b00772

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.