4 years ago

Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance

Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance
Sae Shibata, Toshihiro Kondo, Eika Tomizawa, Ayano Ohama, Asami Omachi, Kumar Sai Smaran
The electrochemical quartz crystal microbalance technique was employed to study the initial stage of the electrodeposition and dissolution of lithium utilizing three kinds of electrolyte solutions such as LiPF6, LiTFSI, or LiFSI in tetraglyme. The native-SEI (solid–electrolyte interphase) formed by a potential prescan before lithium deposition/dissolution in all three solutions. Simultaneous additional SEI (add-SEI) deposition and its dissolution with lithium deposition and dissolution, respectively, were observed in LiPF6 and LiTFSI. Conversely, the add-SEI dissolution with lithium deposition and its deposition with lithium dissolution were observed in LiFSI. Additional potential precycling resulted in the accumulation of a “pre-SEI” layer over the native-SEI layer in all of the solutions. With the pre-SEI, only lithium deposition/dissolution were significantly observed in LiTFSI and LiFSI. On the basis of the potential dependences of the mass and resistance changes, the anion-dependent effects of such a pre-SEI layer presence/absence on the lithium deposition/dissolution processes were discussed.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02312

DOI: 10.1021/acs.jpclett.7b02312

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.