4 years ago

Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach

Understanding the Different Exciton–Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach
Ritesh Agarwal, Bumsu Lee, Carl H. Naylor, A. T. Charlie Johnson, Gerui Liu, Biyuan Zheng, Yuhui Wang, Anlian Pan, Wenjing Liu
We study exciton–plasmon coupling in two-dimensional semiconductors coupled with Ag plasmonic lattices via angle-resolved reflectance spectroscopy and by solving the equations of motion (EOM) in a coupled oscillator model accounting for all the resonances of the system. Five resonances are considered in the EOM model: semiconductor A and B excitons, localized surface plasmon resonances (LSPRs) of plasmonic nanostructures, and the lattice diffraction modes of the plasmonic array. We investigated the exciton–plasmon coupling in different 2D semiconductors and plasmonic lattice geometries, including monolayer MoS2 and WS2 coupled with Ag nanodisk and bowtie arrays and examined the dispersion and line shape evolution in the coupled systems via the EOM model with different exciton–plasmon coupling parameters. The EOM approach provides a unified description of the exciton–plasmon interaction in the weak, intermediate, and strong coupling cases with correctly explaining the dispersion and lineshapes of the complex system. This study provides a much deeper understanding of light–matter interactions in multilevel systems in general and will be useful to instruct the design of novel two-dimensional exciton–plasmonic devices for a variety of optoelectronic applications with precisely tailored responses.

Publisher URL: http://dx.doi.org/10.1021/acsphotonics.7b00672

DOI: 10.1021/acsphotonics.7b00672

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.