5 years ago

“Flying Plasmons”: Fabry-Pérot Resonances in Levitated Silver Nanowires

“Flying Plasmons”: Fabry-Pérot Resonances in Levitated Silver Nanowires
Günter Kewes, Andreas W. Schell, Alexander Kuhlicke, Oliver Benson
Plasmonic nano structures such as wire waveguides or antennas are key building blocks for novel highly integrated photonics. A quantitative understanding of the optical material properties of individual structures on the nanoscale is thus indispensable for predicting and designing the functionality of complex composite elements. In this letter we study propagating surface plasmon polaritons in single silver nanowires isolated from its environment by levitation in a linear Paul trap. Symmetry-breaking effects, for example, from supporting substrates are completely eliminated in this way. Illuminated with white light from a supercontinuum source, Fabry-Pérot-like resonances are observed in the scattering spectra obtained from the ends of the nanowires. The plasmonic nature of the signal is verified by local excitation and photon collection corresponding to a clean transmission measurement through a Fabry-Pérot resonator. A numerical simulation is used to compute the complex effective refractive indices of the nanowires as input parameter for a simple Fabry-Pérot model, which nicely reproduces the measured spectra despite the highly dispersive nature of the system. Our studies pave the way for quantitative characterization of nearly any trappable plasmonic nano object, even of fragile ones such as droplets of liquids or molten metal and of nearly any nanoresonator based on a finite waveguide with implications for modeling of complex hybrid structures featuring strong coupling or lasing. Moreover, the configuration has the potential to be complemented by gas sensors to study the impact of hot electrons on catalytic reactions nearby plasmonic particles.

Publisher URL: http://dx.doi.org/10.1021/acsphotonics.7b00526

DOI: 10.1021/acsphotonics.7b00526

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.