4 years ago

Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite

Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite
Nicolas Renaud, Ferdinand C. Grozema, María C. Gélvez-Rueda
The fundamental opto-electronic properties of organic–inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite yellow phase that hinders its photovoltaic performance. A clear understanding of how the structural parameters affect the opto-electronic properties is currently lacking. We have studied the opto-electronic properties of FAPbI3 using microwave conductivity measurements. We find that the mobility of FAPbI3 increases at low temperature following a phonon scattering behavior. Unlike methylammonium lead iodide (MAPbI3), there are no abrupt changes after the low-temperature β/γ phase transition and the lifetime is remarkably long. This absence of abrupt changes can be understood in terms of the reduced rotational freedom and smaller dipole moment of the formamidinium, as compared to methylammonium.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09303

DOI: 10.1021/acs.jpcc.7b09303

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.