3 years ago

Characterization Study of CO2, CH4, and CO2/CH4 Hydroquinone Clathrates Formed by Gas–Solid Reaction

Characterization Study of CO2, CH4, and CO2/CH4 Hydroquinone Clathrates Formed by Gas–Solid Reaction
Pascale Senechal, Virginie Pellerin, Joachim Allouche, Christophe Dicharry, Jean-Paul Grenet, Jean-Marc Sotiropoulos, Romuald Coupan, Stephane Labat, Joseph Diaz, Peter Moonen, Abdel Khoukh, Fabrice Guerton, Jean-Philippe Torré, Frédéric Plantier, Eve Péré
Hydroquinone (HQ) is known to form organic clathrates with some gaseous species such as CO2 and CH4. This work presents spectroscopic data, surface and internal morphologies, gas storage capacities, guest release temperatures, and structural transition temperatures for HQ clathrates obtained from pure CO2, pure CH4, and an equimolar CO2/CH4 mixture. All analyses are performed on clathrates formed by direct gas–solid reaction after 1 month’s reaction at ambient temperature conditions and under a pressure of 3.0 MPa. A collection of spectroscopic data (Raman, FT-IR, and 13C NMR) is presented, and the results confirm total conversion of the native HQ (α-HQ) into HQ clathrates (β-HQ) at the end of the reaction. Optical microscopy and SEM analyses reveal morphology changes after the enclathration reaction, such as the presence of surface asperities. Gas porosimetry measurements show that HQ clathrates and native HQ are neither micro- nor mesoporous materials. However, as highlighted by TEM analyses and X-ray tomography, α- and β-HQ contain unsuspected macroscopic voids and channels, which create a macroporosity inside the crystals that decreases due to the enclathration reaction. TGA and in situ Raman spectroscopy give the guest release temperatures as well as the structural transition temperatures from β-HQ to α-HQ. The gas storage capacity of the clathrates is also quantified by means of different types of gravimetric analyses (mass balance and TGA). After having been formed under pressure, the characterized clathrates exhibit exceptional metastability: the gases remain in the clathrate structure at ambient conditions over time scales of more than 1 month. Consequently, HQ gas clathrates display very interesting properties for gas storage and sequestration applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07378

DOI: 10.1021/acs.jpcc.7b07378

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.