5 years ago

Localized Electrochemiluminescence from Nanoneedle Electrodes for Very-High-Density Electrochemical Sensing

Localized Electrochemiluminescence from Nanoneedle Electrodes for Very-High-Density Electrochemical Sensing
Hong-Yuan Chen, Dechen Jiang, Chunxiu Tian, Xi-Xiang Zhang, Junyu Zhou, Jingjing Zhang, Shan Yang
In this paper, localized electrochemiluminescence (ECL) was visualized from nanoneedle electrodes that achieved very-high-density electrochemical sensing. The localized luminescence at the nanometer-sized tip observed was ascribed to enhanced mass transfer of the luminescence probe at the tip than on the planar surface surrounding the tip, which provided higher luminescence at the tip. The size of the luminescence spots was restricted to 15 μm permitting the electrochemical analysis with a density over 4 × 103 spots/mm2. The positive correlation between the luminescence intensity at the tips and the concentration of hydrogen peroxide supported the quantitative ECL analysis using nanoneedle electrodes. The further modification of glucose oxidase at the electrode surface conceptually demonstrated that the concentration of glucose ranging from 0.5 to 5 mM could be quantified using the luminescence at the tips, which could be further applied for the detection of multiple molecules in the complex biosystem. This successful localized ECL offers a specific strategy for the development of very-high-density electrochemical arrays without the complicated chip design.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02363

DOI: 10.1021/acs.analchem.7b02363

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.