3 years ago

Uncovering the Contribution of Microchannel Deformation to Impedance-Based Flow Rate Measurements

Uncovering the Contribution of Microchannel Deformation to Impedance-Based Flow Rate Measurements
Brian J. Nablo, Pengfei Niu, Kiran Bhadriraju, Darwin R. Reyes
Changes in electrical impedance have previously been used to measure fluid flow rate in microfluidic channels. Ionic redistribution within the electrical double layer by fluid flow has been considered to be the primary mechanism underlying such impedance based microflow sensors. Here we describe a previously unappreciated contribution of microchannel deformation to such measurements. We found that flow-induced microchannel deformation contributes significantly to the change in electrical impedance of solutions, in particular to those solutions producing an electrical double layer in the order of a few tens of nanometers (i.e., containing relatively high ionic strength). Since the flow velocity at the measurement surface is near zero, due to the laminar nature of the flow, the contribution of the double layer under the conditions mentioned above should be negligible. In contrast, an increase in the fluid flow rate results in an increase in the microchannel cross-sectional area (because of higher local pressure), therefore, producing a decrease in solution resistance between the two electrodes. Our results suggest that microflow sensors based on the concept of elastic deformation could be designed for in situ monitoring and fine control of fluid flow in flexible microfluidics. Finally, we show that purposefully engineering a larger deformability of the microchannel, by changing the geometry and the Young’s modulus of the microchannel, enhances the sensitivity of this flow rate measurement.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02287

DOI: 10.1021/acs.analchem.7b02287

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.