5 years ago

Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials

Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials
Meghan B. Teunis, Mangilal Agarwal, Barry B. Muhoberac, Rajesh Sardar, Thakshila Liyanage, Sukanta Dolai
Optically bright colloidal semiconductor nanocrystals (CSNCs) are important nanomaterials because of their potential applications such as cellular imaging and solid-state lighting. The optoelectronic properties of CSNCs are strongly controlled by the chemical nature of the surface passivating ligands that are introduced during their synthesis. However, the existing LaMer growth model does not provide a clear understanding of the stage when ligands become attached onto the CSNC surface. Herein, apart from the three stage formation mechanism of CSNCs (supersaturation, nucleation, and growth), an entirely new stage—solely involving surface ligand attachment onto fully grown CSNCs—is now reported that controls their photoluminescence properties. Furthermore, we also demonstrate a fundamentally new surface modification approach using partially passivated CSNCs to introduce a variety of functional groups (azide, alkene, and siloxane), including photoisomerizable molecular machines (e.g., azobenzene), without the use of “state-of-the art” ligand exchange chemistry. Knowledge of the ligand adsorption phenomena and resulting adsorption time dependence expands our fundamental understanding of structure–property relationships while allowing us to engineer novel hybrid functional nanomaterials with both previously unknown optoelectronic properties and supermolecular assembly options for various applications.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03240

DOI: 10.1021/acs.chemmater.7b03240

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.