3 years ago

An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information

An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information
Liquid chromatography-mass spectrometry (LC-MS) is an important analytical platform for metabolomics study. Peak alignment of metabolomics dataset is one of the keys for a successful metabolomics study. In this work, a MS/MS-based peak alignment method for LC-MS metabolomics data was developed. A rigorous strategy for screening endogenous reference variables was proposed. Firstly, candidate endogenous reference variables were selected based on MS, MS/MS and retention time in all samples. Multiple robust endogenous reference variables were obtained through further evaluation and confirmation. Then retention time of each metabolite feature was corrected by local linear regression using the four nearest neighbor robust reference variables. Finally, peak alignment was carried out based on corrected retention time, MS and MS/MS. Comparing with the other two peak alignment methods, the developed method showed a good performance and was suitable for metabolomics data with larger retention time drift. Our approach provides a simple and robust alignment method which is reliable to align LC-MS metabolomics dataset.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017308620

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.