4 years ago

A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots

A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots
In this paper, a redox-modulated fluorescent strategy based on the transformation of Fe2+/Fe3+ couple and enzymatic reaction for rapid monitoring glucose and uric acid using graphene quantum dots (GQDs) as fluorescent probe was developed. Hydrogen peroxide (H2O2) can be produced by the enzymatic reaction of a series of metabolites, such as glucose and uric acid. In the presence of hydrogen peroxide, Fe2+ can be oxidized and converted to Fe3+, which have a significant quenching difference in the fluorescence of graphene quantum dots (GQDs). Thus, a sensitive and label-free biosensor for the detection of uric acid and glucose was developed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of uric acid and glucose in the range of 0.1–45 μmolL-1 and 0.1–30 μmolL-1 with a detection limit of 0.026 μmolL−1and 0.021 μmolL−1, respectively. The proposed method was applied to the determination of uric acid and glucose in human serum samples with satisfactory results, which had potential application to detect metabolites associated with H2O2 release.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017308358

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.