3 years ago

Electrowetting on Immersed Conducting Hydrogel

Electrowetting on Immersed Conducting Hydrogel
Vincent Senez, George G. Malliaras, Alexis Vlandas, Caroline Duc
Conducting polymers demonstrate an interesting ability to change their wettability at ultralow voltage (<1 V). While the conducting hydrogel poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) is increasingly used as an interface with biology partly thanks to its mechanical properties, little is known about the electrical control of its wettability. We rely on the captive bubble technique to study this hydrogel property under relevant conditions (fully immerged). We here report that the wettability variations of PEDOT:PSS are driven by an electrowetting phenomenon in contrast to other conducting polymers which are thought to undergo wettability changes due to oxido-reduction reactions. In addition, we propose a modified electrowetting model to describe the wettability variations of PEDOT:PSS in aqueous solution under ultralow voltage and we show how these variations can be tuned in different ranges of contact angles (above or under 90°) by coating the PEDOT:PSS surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b07971

DOI: 10.1021/acs.jpcb.7b07971

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.