3 years ago

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR
Ved Prakash Roy, Kevin J. Kubarych
Using the thiocyanate anion as a vibrational probe chromophore in conjunction with infrared and NMR spectroscopy, we find that SCN strongly associates with the cationic head group of dodecyltrimethylammonium bromide (DTAB) micelles, both in normal-phase and reverse micelles. In competition with chloride and iodide ions, we find no evidence for displacement of thiocyanate, in accord with the chaotropicity of the Hofmeister ordering, while lending support to a direct interaction picture of its origin. Ultrafast 2D-IR spectroscopy of the SCN probe in a range of DTAB micelle sizes (w0 = 4 to w0 = 12) shows little if any size dependence on the time scale for spectral diffusion, which is found to be ∼3.5 times slower than in bulk water (both D2O and H2O). Normal-phase micelles studied with 2D-IR exhibit essentially the same spectral dynamics as do reverse micelles, indicating a lack of sensitivity to interfacial curvature. Combined with 1H NMR chemical shift perturbations, we conclude that the SCN ions tightly associate with the head groups and are partially buried. The 3–4-fold slowdown in spectral diffusion is consistent with the excluded volume model for interfacial perturbation to hydrogen bond reorientation dynamics. On the basis of these observations and comparisons to previous studies of zwitterionic interfaces probed with phosphate transitions, we conclude that the SCN spectral dynamics in both reverse- and normal-phase micelles is largely dominated by hydration contributions, and offers a promising probe of interfacial hydration at cationic interfaces. Addition of competitive anions alters neither the IR spectra nor the ultrafast dynamics, indicating that SCN is robustly associated with the head groups.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b08225

DOI: 10.1021/acs.jpcb.7b08225

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.