4 years ago

Iron- and Cobalt-Doped Ceria–Zirconia Nanocomposites for Catalytic Cracking of Naphtha with Regenerative Capability

Iron- and Cobalt-Doped Ceria–Zirconia Nanocomposites for Catalytic Cracking of Naphtha with Regenerative Capability
Oki Muraza, Adnan M. Al Amer, Idris A. Bakare, Oluwole O. Ajumobi
Series of nanosized iron- and cobalt-doped ceria–zirconia nanocomposites were prepared using a hydrothermal synthesis technique at 180 °C for 24 h, with the successful novel incorporation of both Co and Fe on ceria–zirconia, for n-hexane catalytic cracking. Effects of dopant ions on the improvement of intrinsic properties of ceria–zirconia nanocomposites were investigated using disparate characterization techniques. The synthesized ceria–zirconia nanocomposites exhibited similar X-ray diffraction (XRD) patterns, indicating full fusion of the metal ions into the ceria–zirconia lattice structure. The synthesized nanocomposite catalysts were tested for n-hexane cracking over 10 h time-on-stream, with no previous study or report for catalytic cracking of hexane via ceria–zirconia nanocomposites. Relatively high ethylene and propylene selectivity (both >62%) was obtained over CZ, FeCoCZa, and FeCoCZb over time-on-stream. Comparatively, the best catalytic activity and stability was exhibited by FeCoCZa with higher n-hexane conversion. Temperature and catalyst weight per feed flow rate (W/F) variations were investigated using the best catalyst (FeCoCZa). Higher conversions were obtained at higher temperature and lower W/F but with varied product selectivity and yield, over time-on-stream. In addition, the spent catalysts were successfully regenerated after catalytic testing via calcination at 600 °C for 4 h and reused for two additional cycles.

Publisher URL: http://dx.doi.org/10.1021/acs.energyfuels.7b01376

DOI: 10.1021/acs.energyfuels.7b01376

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.