5 years ago

Guided Molecular Assembly on a Locally Reactive 2D Material

Guided Molecular Assembly on a Locally Reactive 2D Material
Antoine Fleurence, Vasile Caciuc, Yukiko Yamada-Takamura, Nicolae Atodiresei, Ben Warner, Cyrus F. Hirjibehedin, Stefan Blügel, Yasuo Yoshida, Tobias G. Gill, Yukio Hasegawa
Atomically precise engineering of the position of molecular adsorbates on surfaces of 2D materials is key to their development in applications ranging from catalysis to single-molecule spintronics. Here, stable room-temperature templating of individual molecules with localized electronic states on the surface of a locally reactive 2D material, silicene grown on ZrB2, is demonstrated. Using a combination of scanning tunneling microscopy and density functional theory, it is shown that the binding of iron phthalocyanine (FePc) molecules is mediated via the strong chemisorption of the central Fe atom to the sp3-like dangling bond of Si atoms in the linear silicene domain boundaries. Since the planar Pc ligand couples to the Fe atom mostly through the in-plane d orbitals, localized electronic states resembling those of the free molecule can be resolved. Furthermore, rotation of the molecule is restrained because of charge rearrangement induced by the bonding. These results highlight how nanoscale changes can induce reactivity in 2D materials, which can provide unique surface interactions for enabling novel forms of guided molecular assembly. Molecular templating using a locally reactive 2D material is achieved at the domain boundaries of silicene formed on ZrB2. Selective bonding between silicene sp3-like states and the dz2 orbitals of iron phthalocyanine (FePc) molecules preserves electronic states that are strongly localized on the Pc ligand while pinning the molecule into a unique rotational alignment up to room temperature.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201703929

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.