4 years ago

An Ultrastable and High-Performance Flexible Fiber-Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode

An Ultrastable and High-Performance Flexible Fiber-Shaped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode
Yexiang Tong, Yue Meng, Xihong Lu, Pingping Fang, Minghao Yu, Zhengzhe Lai, Mingmei Wu, Xiyue Zhang, Yinxiang Zeng
Currently, the main bottleneck for the widespread application of Ni–Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging–discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni–Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni–NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni–NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni–NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni–NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g−1) electrolytes. Moreover, a peak energy density of 6.6 µWh cm−2, together with a remarkable power density of 20.2 mW cm−2, is achieved by the flexible quasi-solid-state fiber-shaped Ni–NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni–Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. An ultrastable, flexible fiber-shaped Ni–Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni–NiO heterostructured nanosheets as the cathode. This Ni–NiO//Zn battery exhibits unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g−1) electrolytes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702698

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.