4 years ago

Magnetically Controlled Growth-Factor-Immobilized Multilayer Cell Sheets for Complex Tissue Regeneration

Magnetically Controlled Growth-Factor-Immobilized Multilayer Cell Sheets for Complex Tissue Regeneration
Zhiyuan Zhang, Guanglong Li, Fei Jiang, Liting Jiang, Xiansong Wang, Xinquan Jiang, Wenjie Zhang, Guangzheng Yang
The scaffold-free cell-sheet technique plays a significant role in stem-cell-based regeneration. Furthermore, growth factors are known to direct stem cell differentiation and enhance tissue regeneration. However, the absence of an effective means to incorporate growth factors into the cell sheets hinders further optimization of the regeneration efficiency. Here, a novel design of magnetically controlled “growth-factor-immobilized cell sheets” is reported. A new Fe3O4 magnetic nanoparticle (MNP) coated with nanoscale graphene oxide (nGO@Fe3O4) is developed to label stem cells and deliver growth factors. First, the nGO@Fe3O4 MNPs can be easily swallowed by dental-pulp stem cells (DPSCs) and have no influence on cell viability. Thus, the MNP-labeled cells can be organized via magnetic force to form multilayered cell sheets in different patterns. Second, compared to traditional Fe3O4 nanoparticles, the graphene oxide coating provides plenty of carboxyl groups to bind and deliver growth factors. Therefore, with these nGO@Fe3O4 MNPs, bone-morphogenetic-protein-2 (BMP2) is successfully incorporated into the DPSCs sheets to induce more bone formation. Furthermore, an integrated osteochondral complex is also constructed using a combination of DPSCs/TGFβ3 and DPSCs/BMP2. All these results demonstrate that the new cell-sheet tissue-engineering approach exhibits promising potential for future use in regenerative medicine. A novel design for “growth-factor-immobilized cell sheets” formed under the control of magnetic force is introduced to optimize regeneration efficiency, based on a new nanoscale graphene-oxide-coated Fe3O4 magnetic nanoparticle. The nanocomposites provide a novel magnetically controlled vehicle for delivery of both stem cells and growth factors, and they exhibit promising potential for future use in regenerative medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201703795

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.