3 years ago

Intragranular Phase Proton Conduction in Crystalline Sn1–xInxP2O7 (x = 0 and 0.1)

Intragranular Phase Proton Conduction in Crystalline Sn1–xInxP2O7 (x = 0 and 0.1)
Mahlon S. Wilson, Monika Hartl, Milan Sykora, Luke Daemen, Neil Henson, Hieu H. Pham, Fernando H. Garzon, Cortney R. Kreller, Rangachary Mukundan
Materials that exhibit fast ionic conduction in the intermediate temperature range are highly sought after for applications in fuel cells, electrolyzers, and sensors. Initial reports on tin pyrophosphate indicted that this material exhibited excellent protonic conductivity at 100–300 °C and that transport occurred via proton hopping through the bulk crystalline lattice. In this work, we conclusively show that the high conductivity reported by other research groups is not attributable to the bulk crystalline phase. The proton conduction mechanism of well-characterized Sn1–xInxP2O7 (x = 0 and 0.1) was investigated using ac impedance spectroscopy and inelastic neutron scattering. The crystalline MP2O7 phase possesses negligible bulk conductivity below 600 °C. Above 600 °C, the total conductivity exhibits Arrhenius behavior with an activation energy of ∼1 eV, with an increase in conductivity observed for the In-doped sample. Inelastic neutron scattering data indicates that no appreciable changes in proton concentration occur between hydrated and dehydrated samples of SnP2O7 while changes in proton vibrational mode amplitudes occur with indium doping. The vibrational modes identified for the two materials are consistent with atomistic models of the bulk crystalline conductivity mechanism, where our calculations show that doping of In does not increase the mobility; instead, it helps to incorporate protons. This is also consistent with the Arrhenius behavior of the conductivity in which the activation energy is very similar between the undoped and doped material but with the doped material showing a larger pre-exponential constant. Our modeling results indicate that the interoctahedra hop between two M–O–P bridges is the most dominant transport pathway irrespective of doping. This work helps resolve the ongoing discrepancies in the literature regarding the mechanism of proton conduction in this material system. There exist two distinct conduction mechanisms between stoichiometric Sn1–xInxP2O7 and excess polyphosphate containing Sn0.9In0.1P2+xOz. Intragranular proton transport through the bulk crystalline Sn1–xInxP2O7 material occurs only at elevated temperatures. An amorphous polyphosphate phase residing at the crystalline grain boundaries (not the intercrystalline grain boundaries of the metal pyrophosphate itself) is required to obtain the high conductivity at reduced temperatures reported in the literature.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06060

DOI: 10.1021/acs.jpcc.7b06060

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.