5 years ago

Colloidal Force Study of Particle Fouling on Gas Capture Membrane

Long Ba, Linjun Yang, Lin Zhang, Hang Song, Bin Hu
Membrane fouling induced by industrial flue gas deteriorates their gas capturing efficiency, which is mainly caused by the adhesion of aerosol particles. To fully understand the mechanism of membrane fouling, a quantitative study of the adhesion force of particle on membrane surface was investigated by atomic force microscopy (AFM). The adhesion force of a single particle with flat glass, silicon wafer, PP (polypropylene) membrane, and fly-ash particles were measured within the relative humidity (RH) of 0 ~ 85%. The results showed the adhesion force of a particle with membrane have not much difference from the glass and silica wafer. And the surface roughness of flat substrate has slight effect on the adhesion force of the micrometer scale particle on flat surface at dry condition, while measured adhesion forces show obvious RH dependent for glass and membrane. Additionally, at dry conditions, the adhesion force of inter-particles also shows no obvious quantitative difference but obvious scattering comparing to that on membrane. The adhesion force of inter-particles increased more higher with the RH than that on membrane, which indicates the adhesion between micrometer scale particles can accelerate the deposition of particles on membrane and contributes the most to membrane fouling in industry atmosphere.

Publisher URL: https://www.nature.com/articles/s41598-017-13553-3

DOI: 10.1038/s41598-017-13553-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.