5 years ago

Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes

Glycated Apolipoprotein A-IV Induces Atherogenesis in Patients With CAD in Type 2 Diabetes
Nonenzymatic glycation of apolipoproteins plays a role in the pathogenesis of the vascular complications of diabetes. Objectives This study investigated whether apolipoprotein (apo) A-IV was glycated in patients with type 2 diabetes mellitus (T2DM) and whether apoA-IV glycation was related to coronary artery disease (CAD). The study also determined the biological effects of glycated apoA-IV. Methods The authors consecutively enrolled 204 patients with T2DM without CAD (Group I), 515 patients with T2DM with CAD (Group II), and 176 healthy subjects (control group) in this study. ApoA-IV was precipitated from ultracentrifugally isolated high-density lipoprotein, and its glycation level was determined based on Western blotting densitometry (relative intensity of apoA-IV glycation). ApoA-IV NƐ-(carboxylmethyl) lysine (CML) modification sites were identified by mass spectrometry in 37 control subjects, 63 patients in Group I, and 138 patients in Group II. Saline or glycated apoA-IV (g-apoA-IV) generated by glyoxal culture was injected into apoE–/– mice to evaluate atherogenesis, and was also used for the cell experiments. Results The relative intensity and the abundance of apoA-IV glycation were associated with the presence and severity of CAD in patients with T2DM (all p < 0.05). The experiments showed that g-apoA-IV induced proinflammatory reactions in vitro and promoted atherogenesis in apoE–/– mice through the nuclear receptor NR4A3. G-apoA-IV with mutations (K-A) at high-frequency glycation sites exhibited more weakened proinflammatory and atherogenic effects than did g-apoA-IV both in vitro and in vivo. Conclusions ApoA-IV glycation is associated with CAD severity in patients with T2DM, and g-apoA-IV induces atherogenesis through NR4A3 in apoE–/– mice.

Publisher URL: www.sciencedirect.com/science

DOI: S0735109717393853

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.