5 years ago

MTA promotes chemotaxis and chemokinesis of immune cells through distinct calcium-sensing receptor signaling pathways

Mineral trioxide aggregate (MTA) has been introduced as a choice material for regenerative dentistry. To date, the diverse biological activities of MTA, including its anti-inflammatory effects, have been extensively discussed. However, there is limited insight into the link between MTA and immune cell migration. In this study, we report the role of MTA in enhancing both chemotactic and chemokinetic immune cell migration through distinct signaling pathways. By using versatile live imaging techniques, we demonstrated that MTA-mediated CaSR activation induced diverse downstream pathways to govern cell migratory capacity. In this context, Cdc42 generates cytoskeleton-driven cellular protrusions to steer directional cell migration (chemotaxis) whereas Ca2+-calmodulin dependent myosin light chain kinase induces cell contractility that plays an important role in speeding up the average migration speed (chemokinesis). Our findings illuminate an unrecognized role for MTA and the related CaSR signaling network in immune cell migration, providing evidence that can drive development of novel approaches to immunological therapy.

Publisher URL: www.sciencedirect.com/science

DOI: S0142961217306348

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.