5 years ago

Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging

Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging
Photoacoustic imaging (PAI) provides real time non-invasive and contrast agent free monitoring of some endogenous compounds concentrations that provides improved insights into tissue vascularization and oxygenation which are particularly important during tumor progression. This study assessed the input of PAI for examination of melanoma brain metastases in an orthotopic mouse model and further focused on spatial analyses within the tumor tissue. Hemoglobin content appeared to be higher in tumors than in healthy brains. Spatial analyses further showed that angiogenesis was mainly at the tumor periphery. Concomitantly, while healthy brains were highly oxygenated, the tumors were hypoxic and subjected to a gradient of hypoxia from the periphery to the core. In tumor-bearing brains, spectroscopic PAI clearly revealed the presence of melanin, generating a signal 3 times higher than the background signal in healthy brains. When inserted into tissue mimicking phantoms, the photoacoustic signal of B16F10 melanin-containing cells was linearly correlated to their concentration and the detection limit was 625 cells. In vivo biological characterization of tumor models by non-invasive imaging of vasculature and tissue hypoxia represents an interesting opportunity for better understanding cancer progression; it is opening new research prospects to improve diagnostic, therapy, and early assessment of tumor treatment efficacy.

Publisher URL: www.sciencedirect.com/science

DOI: S0378517317308220

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.