4 years ago

Overcoming Pitfalls in Boundary Elements Calculations with Computer Simulations of Ion Selective Membrane Electrodes

Overcoming Pitfalls in Boundary Elements Calculations with Computer Simulations of Ion Selective Membrane Electrodes
Dajing Yuan, Eric Bakker
Finite difference analysis of ion-selective membranes is a valuable tool for understanding a range of time dependent phenomena such as response times, long and medium term potential drifts, determination of selectivity, and (re)conditioning kinetics. It is here shown that an established approach based on the diffusion layer model applied to an ion-exchange membrane fails to use mass transport to account for concentration changes at the membrane side of the phase boundary. Instead, such concentrations are imposed by the ion-exchange equilibrium condition, without taking into account the source of these ions. The limitation is illustrated with a super-Nernstian potential jump, where a membrane initially void of analyte ion is exposed to incremental concentrations of analyte in the sample. To overcome this limitation, the two boundary elements, one at either side of the sample–membrane interface, are treated here as a combined entity and its total concentration change is dictated by diffusional fluxes into and out of the interface. For each time step, the concentration distribution between the two boundary elements is then computed by ion-exchange theory. The resulting finite difference simulation is much more robust than the earlier model and gives a good correlation to experiments.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01777

DOI: 10.1021/acs.analchem.7b01777

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.