3 years ago

Statistical Analysis of Multiple Phenotypes in Genetic Epidemiological Studies:From Cross-Phenotype Associations to Pleiotropy.

Wang, Salinas, DeWan
In the context of genetics, pleiotropy refers to the phenomenon in which a single genetic locus affects more than one trait or disease. Genetic epidemiological studies have identified loci associated with multiple phenotypes, and these cross-phenotype associations are often incorrectly interpreted as examples of pleiotropy. Pleiotropy is only one possible explanation for cross-phenotype associations. Cross-phenotype associations may also arise due to issues related to study design, confounder bias, or non-genetic causal links between the phenotypes under analysis. Therefore, it is necessary to dissect cross-phenotype associations carefully to uncover true pleiotropic loci. In this review, we describe statistical methods that can be used to identify robust statistical evidence of pleiotropy. First, we provide an overview of univariate and multivariate methods for discovery of cross-phenotype associations and highlight important considerations for choosing among available methods. Then, we describe how to dissect cross-phenotype associations by using mediation analysis. Pleiotropic loci provide insights into the mechanistic underpinnings of disease comorbidity, and may serve as novel targets for interventions that simultaneously treat multiple diseases. Discerning between different types of cross-phenotype associations is necessary to realize the public health potential of pleiotropic loci.

Publisher URL: http://doi.org/10.1093/aje/kwx296

DOI: 10.1093/aje/kwx296

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.