4 years ago

Local dynamic stability during treadmill walking can detect children with developmental coordination disorder

Developmental coordination disorder (DCD) is an innate impairment of motor coordination that affects basic locomotion and balance. This study investigated local dynamic stability of trunk accelerations during treadmill walking as an objective evaluation of gait stability and the sensitivity and specificity of this measure to discriminate children with DCD from typically developing children. Method Eight children with DCD and ten age- and gender-matched typically developing children (TD) walked four minutes on a treadmill. Trunk accelerations in vertical, medio-lateral and anterior-posterior directions were recorded with a sternum mounted accelerometer at 256Hz. Short term local dynamic stability (λs), root mean square (RMS) and relative root mean square (RMSR) were calculated from measures of orthogonal trunk accelerations. Receiver operating characteristic curve (ROC) analysis was performed to discriminate between groups based on short term local dynamic stability. Results λs was significantly greater in children with DCD in the main movement direction (AP) (DCD: 1.69±0.17 λs; TD:1.41±0.17 λs; p =0.005), indicating reduced local dynamic stability. RMS and RMSR accelerations showed no difference between children with DCD and TD children in any direction. The ROC analysis of λs in separate directions and in two dimensions showed an excellent accuracy of discriminating between children with DCD and TD children. Anterior-posterior direction in combination with medio-lateral or vertical showed best performance with an area under the curve (AUC) of 0.91. Conclusion We have shown that children with developmental coordination disorder have general reduced local dynamic stability and that the short term Lyapunov exponent has good power of discrimination between DCD and TD.

Publisher URL: www.sciencedirect.com/science

DOI: S0966636217309414

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.