3 years ago

Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information

Daniel Kerschensteiner, Jen-Chun Hsiang, Linda Madisen, Keith Johnson, Hongkui Zeng
Neurons receive synaptic inputs on extensive neurite arbors. How information is organized across arbors and how local processing in neurites contributes to circuit function is mostly unknown. Here, we used two-photon Ca2+ imaging to study visual processing in VGluT3-expressing amacrine cells (VG3‑ACs) in the mouse retina. Contrast preferences (ON vs. OFF) varied across VG3‑AC arbors depending on the laminar position of neurites, with ON responses preferring larger stimuli than OFF responses. Although arbors of neighboring cells overlap extensively, imaging population activity revealed continuous topographic maps of visual space in the VG3‑AC plexus. All VG3‑AC neurites responded strongly to object motion, but remained silent during global image motion. Thus, VG3‑AC arbors limit vertical and lateral integration of contrast and location information, respectively. We propose that this local processing enables the dense VG3‑AC plexus to contribute precise object motion signals to diverse targets without distorting target-specific contrast preferences and spatial receptive fields.

Publisher URL: https://elifesciences.org/articles/31307

DOI: 10.7554/eLife.31307

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.