4 years ago

Facile synthesis of graphitic C3N4 nanoporous-tube with highly enhancement of visible-light photocatalytic activity.

Wu, Wang, Zhao, Mei, Yan, Gao, Hao, Yang, Zhai
A simple and convenient method was used to synthesize graphitic carbon nitride (g-C3N4) nanoporous-tube by using SiO2 nanoparticles as pore formers. The structure of the g-C3N4 nanoporous-tube was characterized by the SEM and TEM images. Taking photodegradation of RhB as an example, the photocatalytic activity of the as-prepared g-C3N4 nanoporous-tube was investigated. It can photodegrade 90% RhB in 40 minutes under visible-light irradiation and obtain a k value of 0.04491 min-1 , which is 8.16 times that of bulk g-C3N4, 3.09 times that of tubular g-C3N4 and 1.48 times that of tubular g-C3N4-SiO2. The significant enhancement in photocatalytic efficiency is due to the edge effect of the pores and the special structure of the tubes. In addition, the possible mechanism of photocatalytic degradation of RhB was also proposed based on the trapping experiment of active species, which indicated that the superoxide radicals (O2•-) and the holes (h+) were the main reactive species in this photocatalyst. This work may open up a new idea of innovation in g-C3N4 structure and inspire its follow-up study.

Publisher URL: http://doi.org/10.1088/1361-6528/aa929a

DOI: 10.1088/1361-6528/aa929a

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.