4 years ago

An Engineered Synthetic Pathway for Discovering Nonnatural Nonribosomal Peptides in Escherichia coli.

Cleto, Lu
Peptides that are synthesized independently of the ribosome in plants, fungi, and bacteria can have clinically relevant anticancer, antihemochromatosis, and antiviral activities, among many other. Despite their natural origin, discovering new natural products is challenging, and there is a need to expand the chemical diversity that is accessible. In this work, we created a novel, compressed synthetic pathway for the heterologous expression and diversification of nonribosomal peptides (NRPs) based on homologs of siderophore pathways from Escherichia coli and Vibrio cholerae To enhance the likelihood of successful molecule production, we established a selective pressure via the iron-chelating properties of siderophores. By supplementing cells containing our synthetic pathway with different precursors that are incorporated into the pathway independently of NRP enzymes, we generated over 20 predesigned, novel, and structurally diverse NRPs. This engineering approach, where phylogenetically related genes from different organisms are integrated and supplemented with novel precursors, should enable heterologous expression and molecular diversification of NRPs.IMPORTANCE Nonribosomal peptides (NRPs) constitute a source of bioactive molecules with potential therapeutic applications. However, discovering novel NRPs by rational engineering of biosynthetic pathways remains challenging. Here, we show that a synthetic compressed pathway in which we replaced biosynthetic genes with their ancestral homologs and orthologs enabled successful heterologous NRP expression. Polyamines added exogenously were incorporated into nascent NRPs, and molecular production was pressured by growing the host under conditions that make such NRPs beneficial for survival. This multilayered approach resulted in the assembly of over 20 distinct and novel molecules. We envision this strategy being used to enable the production of NRPs from heterologous pathways.

Publisher URL: http://doi.org/10.1128/mBio.01474-17

DOI: 10.1128/mBio.01474-17

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.