5 years ago

Closed Bipolar Electrodes for Spatial Separation of H2 and O2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells

Closed Bipolar Electrodes for Spatial Separation of H2 and O2 Evolution during Water Electrolysis and the Development of High-Voltage Fuel Cells
Darren A. Walsh, Sean Goodwin
Electrolytic water splitting could potentially provide clean H2 for a future “hydrogen economy”. However, as H2 and O2 are produced in close proximity to each other in water electrolyzers, mixing of the gases can occur during electrolysis, with potentially dangerous consequences. Herein, we describe an electrochemical water-splitting cell, in which mixing of the electrogenerated gases is impossible. In our cell, separate H2- and O2-evolving cells are connected electrically by a bipolar electrode in contact with an inexpensive dissolved redox couple (K3Fe(CN)6/K4Fe(CN)6). Electrolytic water splitting occurs in tandem with oxidation/reduction of the K3Fe(CN)6/K4Fe(CN) redox couples in the separate compartments, affording completely spatially separated H2 and O2 evolution. We demonstrate operation of our prototype cell using conventional Pt electrodes for each gas-evolving reaction, as well as using earth-abundant Ni2P electrocatalysts for H2 evolution. Furthermore, we show that our cell can be run in reverse and operate as a H2 fuel cell, releasing the energy stored in the electrogenerated H2 and O2. We also describe how the absence of an ionically conducting electrolyte bridging the H2- and O2-electrode compartments makes it possible to develop H2 fuel cells in which the anode and cathode are at different pH values, thereby increasing the voltage above that of conventional fuel cells. The use of our cell design in electrolyzers could result in dramatically improved safety during operation and the generation of higher-purity H2 than available from conventional electrolysis systems. Our cell could also be readily modified for the electrosynthesis of other chemicals, where mixing of the electrochemical products is undesirable.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04226

DOI: 10.1021/acsami.7b04226

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.