3 years ago

Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh

The effects of climate change on the agricultural sector are tremendous. Thus, it is essential to determine its impacts on agricultural water resources and to minimize adverse effects on crop production. The present study aims to simulate climate data based on SRES A1B scenario from the outputs of three General Circulation Models (GCMs) namely, FGOAL, HADCM3 and IPCM4 and examine the design water requirement (DWR) of winter paddy using frequency analysis under climate change condition in Bangladesh. The average change rates of DWR in four climatic zones were compared to baseline and the results were −12.16% (2020s), −0.28% (2055s), and 1.25% (2090s) for the FGOAL, −4.44% (2020s), 0.57% (2055s) and 1.25% (2090s) for the HADCM3, and −1.12% (2020s), 2.22% (2055s) and 6.69% (2090s) for the IPCM4. The change rates of gross paddy water demand (GPWD) for three GCMs ranged from −3.01% to 11.16%. In both cases of the DWR and GPWD, the change rates were above 3%, indicating a warning signal to the future winter paddy water management. The outcomes of this study can be used as basic data for the development of agricultural water resource management, which will help to minimize the drought-risk and to implement future agricultural water resource policies in Bangladesh.

Publisher URL: www.sciencedirect.com/science

DOI: S0378377417303153

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.