5 years ago

Stacking Sequence and Acceptor Dependence of Photocurrent Spectra and Photovoltage in Organic Two-Junction Devices

Stacking Sequence and Acceptor Dependence of Photocurrent Spectra and Photovoltage in Organic Two-Junction Devices
Fei Qin, Yinhua Zhou, Bangwu Luo, Sixing Xiong, Youyu Jiang, Lin Mao
Both single-junction and tandem organic photovoltaic cells have been well developed. A tandem cell contains two junctions with a charge recombination layer (CRL) inserted between the two junctions. So far, there is no detailed report on how the device will perform that contains two junctions but without a CRL in between. In this work, we report the photocurrent spectra and photovoltage output of the devices that contains two bulk-heterojunctions (BHJ) stacked directly on top of each other without a CRL. The top active layer is prepared by transfer printing. The photocurrent response spectra and photovoltage are found to be sensitive to stacking sequence and the selection of electron acceptors. The open-circuit voltage of the devices (up to 1.09 V) can be higher than the devices containing either junction layer. The new phenomenon in the new device architecture increases the versatility of the optoelectronic devices based on organic semiconductors.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05380

DOI: 10.1021/acsami.7b05380

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.