5 years ago

Mechanisms of UV-Light Promoted Removal of As(V) by Sulfide from Strongly Acidic Wastewater

Mechanisms of UV-Light Promoted Removal of As(V) by Sulfide from Strongly Acidic Wastewater
managing.editor@est.acs.org (American Chemical Society)
Strongly acidic wastewater with a high arsenic concentration is produced by a number of industries. The removal of As(V) (H3AsO4) by sulfide from strongly acidic wastewater remains a difficult issue. This study proposed a UV-assisted method to efficiently remove As(V) by sulfide, and the involved mechanisms were systematically investigated. In the dark, the low removal efficiency of As(V) by sulfide was attributed to the slow formation and transformation of an intermediate species, i.e., monothioarsenate (H3AsO3S), in the As(V) sulfuration reaction, which were the rate-controlling steps in this process. However, UV irradiation significantly promoted the removal efficiency of As(V) not only by promoting the formation of H3AsO3S through light-induced HS and •H radicals but also by enhancing the transformation of H3AsO3S through a charge-transfer process between S(-II) and As(V) in the H3AsO3S complex, leading to the reduction of As(V) to As(III) and the oxidation of S(-II) to S(0). The formed As(III) species immediately precipitated as As2S3 under excess S(-II). Kinetic modeling offered a quantitative explanation of the results and verified the proposed mechanisms. This study provides a theoretical foundation for the application of light-promoted As(V) sulfuration removal, which may facilitate the recycling and reuse of arsenic and acid in strongly acidic wastewater.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b02451

DOI: 10.1021/acs.est.7b02451

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.