3 years ago

Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate

In this study, a novel photocatalytic thin film nanocomposite (TFC) membrane was prepared for removal of hexavalent chromium (Cr(VI)) from aqueous solution. In this regards, a TFC membrane was modified by a layer of chitosan as an adsorbent and then was coated with a layer of synthesized photocatalytic nanoscale zerovalent iron@titanium dioxide (nZVI@TiO2) nanoparticles via layer-by-layer (LBL) technology. Prepared membranes were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and contact angle analysis. The Cr(VI) removal efficiency of the membranes was evaluated by batch removal and dynamic filtration tests. The water flux was increased from 26.2 to 39.7l/m2 h as a consequence of improved hydrophilicity which was approved by contact angle analysis. The modified TFC membrane has shown the significant removal of Cr(VI) in retentate as well as the permeate stream. Further, the Cr(VI) removal of retentate flow decreased with increasing pH and feed concentration whereas the Cr(VI) removal of permeate was enhanced with increasing initial feed concentration. Increasing the flux recovery from 62% (for neat TFC) to 87% (for modified TFC membrane) demonstrated that the modification of membrane improved the anti-fouling property of the modified membrane.

Publisher URL: www.sciencedirect.com/science

DOI: S0304389417307495

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.