4 years ago

Effect of evaporative weathering and oil-sediment interaction on the fate and behavior of diluted bitumen in marine environments. Part 2. The water accommodated and particle-laden hydrocarbon species and toxicity of the aqueous phase

Effect of evaporative weathering and oil-sediment interaction on the fate and behavior of diluted bitumen in marine environments. Part 2. The water accommodated and particle-laden hydrocarbon species and toxicity of the aqueous phase
In this study, the water accommodated and particle-laden hydrocarbon species, and the toxicity of the aqueous phase after oil-sediment interactions by varying the weathering states of diluted bitumen (Cold Lake blend (CLB)), oil type from light to heavy, and sediment type. Compared to the original oils, the sediment-laden total petroleum hydrocarbons (TPH) contained fewer hydrocarbons in the carbon range <C 10, comparable contents in C 10C 16 range, higher contents in both the C 16C 34 and >C 34 range. Sediment-laden oil amounts generally decreased with an increased viscosity and asphaltene content of the test oils, as well as with increased sediment particle size. The presence of sediments significantly decreased the oil accommodated in water due to the formation of oil particulate aggregates (OPA) after mixing and settling. Less water accommodated TPH and polycyclic aromatic hydrocarbons (PAHs) were observed for weathered CLB products. However, oil and sediment types did not clearly affect the water accommodated TPH and PAHs. Light molecular PAHs and their alkylated congeners accounted for most of the water accommodated PAH congeners. A microtoxicity test demonstrated that with or without sediment, and regardless of sediment type, the toxicity of the water phase did not change significantly. Light oil of Alberta sweet mixed blend (ASMB) had the highest toxicity, followed by fresh CLB, and then all other oils, suggesting that ASMB and fresh CLB had relatively higher levels of light toxic components dissolved in the water phase compared with the other tested oils.

Publisher URL: www.sciencedirect.com/science

DOI: S0045653517316053

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.