5 years ago

Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment

Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment
To solve sludge disposal and management problems during dyeing wastewater treatment, the produced excess biological sludge and ferric sludge were fabricated into a magnetic biochar composite (MBC) under the optimal hydrothermal carbonization (HTC) conditions. With ferric sludge mixing, the generated MBC contained paramagnetic Fe3O4, showed a smaller diameter of approximately 200 nm, a smaller pore size, a larger specific surface area and a higher carbonization degree than BC prepared using a single biological sludge process under the same HTC conditions. Additionally, biochar and Fe3O4 in the MBC were found to be tightly combined through chemical bonding, imparting MBC with its own property of magnetic recycling. The stable high Methylene Blue (MB) degradation performance in a Fenton reaction after recycling designated it as a good catalyst. The MB degradation pathway was proposed based on GC–MS results. When the MBC was used to treat actual dyeing wastewater through a Fenton process, the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies reached 47 ± 3.3% and 49 ± 2.7%, respectively. Therefore, MBC could be recycled as a catalyst in dyeing wastewater treatment. And a methodology is described that minimizes the produced sludge and enables sludge internal recycling in a dyeing wastewater treatment plant.

Publisher URL: www.sciencedirect.com/science

DOI: S0045653517315989

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.