5 years ago

The positive relationships between plant coverage, species richness, and aboveground biomass are ubiquitous across plant growth forms in semi-steppe rangelands

The positive relationships between plant coverage, species richness, and aboveground biomass are ubiquitous across plant growth forms in semi-steppe rangelands
The positive relationships between biodiversity and aboveground biomass are important for biodiversity conservation and greater ecosystem functioning and services that humans depend on. However, the interaction effects of plant coverage and biodiversity on aboveground biomass across plant growth forms (shrubs, forbs and grasses) in natural rangelands are poorly studied. Here, we hypothesized that, while accounting for environmental factors and disturbance intensities, the positive relationships between plant coverage, biodiversity, and aboveground biomass are ubiquitous across plant growth forms in natural rangelands. We applied structural equation models (SEMs) using data from 735 quadrats across 35 study sites in semi-steppe rangelands in Iran. The combination of plant coverage and species richness rather than Shannon's diversity or species diversity (a latent variable of species richness and evenness) substantially enhance aboveground biomass across plant growth forms. In all selected SEMs, plant coverage had a strong positive direct effect on aboveground biomass (β = 0.72 for shrubs, 0.84 for forbs and 0.80 for grasses), followed by a positive effect of species richness (β = 0.26 for shrubs, 0.05 for forbs and 0.09 for grasses), and topographic factors. Disturbance intensity had a negative effect on plant coverage, whereas it had a variable effect on species richness across plant growth forms. Plant coverage had a strong positive total effect on aboveground biomass (β = 0.84 for shrubs, 0.88 for forbs, and 0.85 for grasses), followed by a positive effect of species richness, and a negative effect of disturbance intensity across plant growth forms. Our results shed light on the management of rangelands that is high plant coverage can significantly improve species richness and aboveground biomass across plant growth forms. We also found that high disturbance intensity due to heavy grazing has a strong negative effect on plant coverage rather than species richness in semi-steppe rangelands. This study suggests that proper grazing systems (e.g. rotational system) based on carrying capacity and stocking rate of a rangeland may be helpful for biodiversity conservation, better grazing of livestock, improvement of plant coverage and enhancement of aboveground biomass.

Publisher URL: www.sciencedirect.com/science

DOI: S0301479717309544

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.