3 years ago

A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures

A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures
In recent years, research studies have shown that the thermal resistance of foodborne pathogens in the low moisture foods is greatly influenced by the water activity (aw) at temperatures relevant to thermal treatments for pathogen control. Yet, there has been a lack of an effective method for accurate measurement of aw at those temperatures. Thus, the main aim of this study was to evaluate a new method for measuring aw of food samples at elevated temperatures. An improved thermal cell with a relative humidity and temperature sensor was used to measure the aw of the three different food samples, namely, organic wheat flour, almond flour, and non-fat milk powder, over the temperature range between 20 and 80°C. For a constant moisture content, the aw data was used to estimate the net isosteric heat of sorption (q st ). The q st values were then used in the Clausius Clapeyron equation (CCE) equation to estimate the moisture sorption isotherm for all test food samples at different temperatures. For all the tested samples of any fixed moisture content, aw value generally increased with the temperature. The energy for sorption decreased with increasing moisture content. With the experimentally determined q st value, CCE describes well about the changes in aw of the food samples between 20 and 80°C. This study presents a method to obtain aw of a food sample for a specific moisture content at different temperatures which could be extended to obtain q st values for different moisture contents and hence, the moisture sorption isotherm of a food sample at different temperatures.

Publisher URL: www.sciencedirect.com/science

DOI: S0963996917306555

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.