3 years ago

Improved understanding of spatiotemporal controls on regional scale groundwater flooding using hydrograph analysis and impulse response functions

M.J. Ascott, D.M.J. Macdonald, J.P. Bloomfield, B.P. Marchant, A.A. McKenzie
Controls on the spatiotemporal extent of groundwater flooding are poorly understood, despite the long duration of groundwater flood events and distinct social and economic impacts. We developed a novel approach using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) and applied it to the 2013/14 Chalk groundwater flooding in the English Lowlands. We proposed a standardised index of groundwater flooding which we calculated for monthly groundwater levels for 26 boreholes in the Chalk. We grouped these standardised series using k-means cluster analysis and cross-correlated the cluster centroids with the Standardised Precipitation Index (SPI) accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which responded to precipitation over different timescales. We estimated IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models corroborate the SPI analysis showing different response functions between the groups. We applied identical effective precipitation inputs to each of the IRF models and observed differences between the hydrographs from each group. It is suggested this is due to the hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits (recent unconsolidated sediments overlying the bedrock, such as clays and tills), which are extensive over one of the groups. The overarching controls on groundwater flood response are concluded to be a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events. The approach presented is generic and parsimonious and can be easily applied where sufficient groundwater level and rainfall data are available.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/hyp.11380

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.