4 years ago

General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols

General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols
Yi Shi, Yang Wang, Padon Chuentragool, Marvin Parasram, Vladimir Gevorgyan
A general, efficient, and site-selective visible light-induced Pd-catalyzed remote desaturation of aliphatic alcohols into valuable allylic, homoallylic, and bis-homoallylic alcohols has been developed. This transformation operates via a hybrid Pd-radical mechanism, which synergistically combines the favorable features of radical approaches, such as a facile remote C–H HAT step, with that of transition-metal-catalyzed chemistry (selective β-hydrogen elimination step). This allows achieving superior degrees of regioselectivity and yields in the desaturation of alcohols compared to those obtained by the state-of-the-art desaturation methods. The HAT at unactivated C(sp3)–H sites is enabled by the easily installable/removable Si-auxiliaries. Formation of the key hybrid alkyl Pd-radical intermediates is efficiently induced by visible light from alkyl iodides and Pd(0) complexes. Notably, this method requires no exogenous photosensitizers or external oxidants.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b08459

DOI: 10.1021/jacs.7b08459

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.