5 years ago

Waterborne Electrospinning of Poly(N-isopropylacrylamide) by Control of Environmental Parameters

Waterborne Electrospinning of Poly(N-isopropylacrylamide) by Control of Environmental Parameters
Samarendra Maji, Ella Schoolaert, Richard Hoogenboom, Dagmar R. D’hooge, Jozefien Geltmeyer, Karen De Clerck, Paul H. M. Van Steenberge, Paulien Ryckx
With increasing toxicity and environmental concerns, electrospinning from water, i.e., waterborne electrospinning, is crucial to further exploit the resulting nanofiber potential. Most water-soluble polymers have the inherent limitation of resulting in water-soluble nanofibers, and a tedious chemical cross-linking step is required to reach stable nanofibers. An interesting alternative route is the use of thermoresponsive polymers, such as poly(N-isopropylacrylamide) (PNIPAM), as they are water-soluble beneath their lower critical solution temperature (LCST) allowing low-temperature electrospinning while the obtained nanofibers are water-stable above the LCST. Moreover, PNIPAM nanofibers show major potential to many application fields, including biomedicine, as they combine the well-known on–off switching behavior of PNIPAM, thanks to its LCST, with the unique properties of nanofibers. In the present work, based on dedicated turbidity and rheological measurements, optimal combinations of polymer concentration, environmental temperature, and relative humidity are identified allowing, for the first time, the production of continuous, bead-free PNIPAM nanofibers electrospun from water. More specifically, PNIPAM gelation was found to occur well below its LCST at higher polymer concentrations leading to a temperature regime where the viscosity significantly increases without compromising the polymer solubility. This opens up the ecological, water-based production of uniform PNIPAM nanofibers that are stable in water at temperatures above PNIPAM’s LCST, making them suitable for various applications, including drug delivery and switchable cell culture substrates.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05074

DOI: 10.1021/acsami.7b05074

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.