5 years ago

Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse

Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse
Ming Chen, Ben Zhong Tang, Anjun Qin, Yalun Wang, Jun Qian, Shiwu Li, Nuernisha Alifu, Wei Qin
Imaging the brain with high integrity is of great importance to neuroscience and related applications. X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are two clinically used modalities for deep-penetration brain imaging. However, their spatial resolution is quite limited. Two-photon fluorescence microscopic (2PFM) imaging with its femtosecond (fs) excitation wavelength in the traditional near-infrared (NIR) region (700–1000 nm) is able to realize deep-tissue and high-resolution brain imaging. However, it requires craniotomy and cranial window or skull-thinning techniques due to photon scattering of the excitation light. Herein, based on a type of aggregation-induced emission luminogen (AIEgen) DCDPP-2TPA with a large three-photon absorption (3PA) cross section at 1550 nm and deep-red emission, we realized through-skull three-photon fluorescence microscopic (3PFM) imaging of mouse cerebral vasculature without craniotomy and skull-thinning. Reduced photon scattering of a 1550 nm fs excitation laser allowed it to effectively penetrate the skull and tightly focus onto DCDPP-2TPA nanoparticles (NPs) in the cerebral vasculature, generating bright three-photon fluorescence (3PF) signals. In vivo 3PF images of the cerebral vasculature at various vertical depths were obtained, and a vivid 3D reconstruction of the vascular architecture beneath the skull was built. As deep as 300 μm beneath the skull, small blood vessels of 2.4 μm could still be recognized.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05645

DOI: 10.1021/acsnano.7b05645

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.