4 years ago

Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances

Unidirectional Doubly Enhanced MoS2 Emission via Photonic Fano Resonances
Xingwang Zhang, Dake Wang, Carl H. Naylor, A. T. Charlie Johnson, Shinhyuk Choi, Ertugrul Cubukcu
Atomically thin transition metal dichalcogenides like MoS2 monolayers exhibit unique luminescent properties. However, weak quantum yield and low light absorption hinder their practical applications in two-dimensional light emitting devices. Here, we report 1300 times enhancement in photoluminescence emission from a MoS2 monolayer via simultaneous Fano resonances in a dielectric photonic crystal. The spatially extended double Fano resonance scheme allows resonant enhancement of both the MoS2 absorption and emission. We also achieve unidirectional emission within a narrow divergence angle of 5° by engineering the Fano resonance angular dispersion. Our approach provides a new platform for efficient light sources with high directionality based on emerging two-dimensional materials.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02777

DOI: 10.1021/acs.nanolett.7b02777

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.