3 years ago

Morphology Dynamics of Single-Layered Ni(OH)2/NiOOH Nanosheets and Subsequent Fe Incorporation Studied by in Situ Electrochemical Atomic Force Microscopy

Morphology Dynamics of Single-Layered Ni(OH)2/NiOOH Nanosheets and Subsequent Fe Incorporation Studied by in Situ Electrochemical Atomic Force Microscopy
Jiang Deng, Christian Dette, Michaela Burke Stevens, Yong Wang, Shannon W. Boettcher, Michael R. Nellist
Nickel (oxy)hydroxide-based (NiOxHy) materials are widely used for energy storage and conversion devices. Understanding dynamic processes at the solid–liquid interface of nickel (oxy)hydroxide is important to improve reaction kinetics and efficiencies. In this study, in situ electrochemical atomic force microscopy (EC-AFM) was used to directly investigate dynamic changes of single-layered Ni(OH)2 nanosheets during electrochemistry measurements. Reconstruction of Ni(OH)2 nanosheets, along with insertion of ions from the electrolyte, results in an increase of the volume by 56% and redox capacity by 300%. We also directly observe Fe cations adsorb and integrate heterogeneously into or onto the nanosheets as a function of applied potential, further increasing apparent volume. Our findings are important for the fundamental understanding of NiOxHy-based supercapacitors and oxygen-evolution catalysts, illustrating the dynamic nature of Ni-based nanostructures under electrochemical conditions.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b03313

DOI: 10.1021/acs.nanolett.7b03313

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.