3 years ago

Highly CO2 Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes

Highly CO2 Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes
M. Göktuğ Ahunbay, Naciye Talınlı, Ayşe Kılıç, Mahdi Ahmadi, Volkan Kumbaracı, Ender Taş, Ş. Birgül Tantekin-Ersolmaz
Microporous metal-imidazolate framework (MMIF), a highly CO2 selective MOF, was incoporated into a polymeric membrane for separation of CO2 from CH4 and N2 for the first time. MMIF nanoparticles of 50–200 nm were synthesized using the sonication method and dispersed into Matrimid, a commercial polyimide, with MOF loading of 10% and 20% by weight to fabricate mixed matrix membranes (MMMs). Morphology, thermal behavior, and glass transition temperature of the membranes were characterized, and single and mixed gas permeation measurements at 35 °C and 4 bar feed pressure were carried out to reveal their separation performance. Both 10% and 20% MMIF containing Matrimid membranes exhibited enhanced gas permeabilities for all three gases. Contrary to expectations, ideal selectivity of membranes was not improved possibly due to the flexible framework of MMIF. On the other hand, mixed gas permeability measurements showed significant improvement in CO2/CH4 separation factor by 130% and CO2/N2 separation factor by 79% due to competitive adsorption favoring CO2.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13054

DOI: 10.1021/acsami.7b13054

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.