3 years ago

Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power

Infrared Black Phosphorus Phototransistor with Tunable Responsivity and Low Noise Equivalent Power
Bowei Dong, Lin Wang, Li Huang, Chengkuo Lee, Kah-Wee Ang, Wee Chong Tan
The narrow band gap property of black phosphorus (BP) that bridges the energy gap between graphene and transition metal dichalcogenides holds great promise for enabling broadband optical detection from ultraviolet to infrared wavelengths. Despite its rich potential as an intriguing building block for optoelectronic applications, however, very little progress has been made in realizing BP-based infrared photodetectors. Here, we demonstrate a high sensitivity BP phototransistor that operates at a short-wavelength infrared (SWIR) of 2 μm under room temperature. Excellent tunability of responsivity and photoconductive gain are acquired by utilizing the electrostatic gating effect, which controls the dominant photocurrent generation mechanism via adjusting the band alignment in the phototransistor. Under a nanowatt-level illumination, a peak responsivity of 8.5 A/W and a low noise equivalent power (NEP) of less than 1 pW/Hz1/2 are achieved at a small operating source–drain bias of −1 V. Our phototransistor demonstrates a simple and effective approach to continuously tune the detection capability of BP photodetectors, paving the way to exploit BP to numerous low-light-level detection applications such as biomolecular sensing, meteorological data collection, and thermal imaging.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09713

DOI: 10.1021/acsami.7b09713

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.