4 years ago

Molecular Engineering of Platinum(II) Terpyridine Complexes with Tetraphenylethylene-Modified Alkynyl Ligands: Supramolecular Assembly via Pt···Pt and/or π–π Stacking Interactions and the Formation of Various Superstructures

Molecular Engineering of Platinum(II) Terpyridine Complexes with Tetraphenylethylene-Modified Alkynyl Ligands: Supramolecular Assembly via Pt···Pt and/or π–π Stacking Interactions and the Formation of Various Superstructures
Heung-Kiu Cheng, Vivian Wing-Wah Yam, Margaret Ching-Lam Yeung
A series of platinum(II) terpyridine complexes with tetraphenylethylene-modified alkynyl ligands has been designed and synthesized. The introduction of the tetraphenylethylene motif has led to aggregation-induced emission (AIE) properties, which upon self-assembly led to the formation of metal–metal-to-ligand charge transfer (MMLCT) behavior stabilized by Pt···Pt and/or π–π interactions. Tuning the steric bulk or hydrophilicity through molecular engineering of the platinum(II) complexes has been found to alter their spectroscopic properties and result in interesting superstructures (including nanorods, nanospheres, nanowires, and nanoleaves) in the self-assembly process. The eye-catching color and emission changes upon varying the solvent compositions may have potential applications in chemosensing materials for the detection of microenvironment changes. Furthermore, the importance of the directional Pt···Pt and/or π–π interactions on the construction of distinctive superstructures has also been examined by UV–vis absorption and emission spectroscopy and transmission electron microscopy. This work represents the interplay of both inter- and intramolecular interactions as well as the energies of the two different chromophoric/luminophoric systems that may open up a new route for the development of platinum(II)–AIE hybrids as functional materials.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11807

DOI: 10.1021/acsami.7b11807

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.